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1. Increased risk aversion increases the CO2 price

2. CO2 price declines over time

3. Increased risk aversion increases risk premium relative to expected damages

4. Enormous social costs of delay

Source: Daniel, Litterman & Wagner (NBER October 2018, PNAS 2019), gwagner.com/ezclimate

1

2

3

4

Four novel conclusions:

in contrast to most standard models employing power utility functions, where increased risk 
aversion implies a higher discount rate implies a lower CO2 price

in contrast to most standard models with the exception of Ulph & Ulph (1994) [producer behavior], 
Acemoglu et al (2012) [shift from “dirty” to “clean”], Lemoine & Rudik (2017) [inertia]

in contrast to standard models due to their use of power utility functions and (typically) lack of 
possibility for ‘catastrophic’ damages

in contrast to most standard models, which often estimate cost of delay based on (rising) ‘optimal’ 
CO2 price over time in any given year (e.g. Nordhaus 2017, Changes in the DICE model, 1992 – 2017)



Standard utility specifications misrepresent (climate) risk
Constant Relative Risk Aversion (CRRA) utility conflates risk across time and across states of nature

2015 base case
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Source: Daniel, Litterman & Wagner (NBER October 2018, PNAS 2019), gwagner.com/ezclimate
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CO2 price declines over time
Starts $>100, declines as uncertainties clear up
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Source: Daniel, Litterman & Wagner (NBER October 2018, PNAS 2019), gwagner.com/ezclimate



CO2 price sensitive to utility specification for ‘reasonable’ RA values
No difference between CRRA and EZ utility at RA=1.1, large differences for RA>~3
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Source: Daniel, Litterman & Wagner (NBER October 2018, PNAS 2019), gwagner.com/ezclimate
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Source: Daniel, Litterman & Wagner (NBER October 2018, PNAS 2019), gwagner.com/ezclimate



CO2 price reflects future state-dependent damages, 𝐷𝐷𝑠𝑠,𝑡𝑡, weighted by their 
probability, 𝜋𝜋𝑠𝑠,𝑡𝑡, and pricing kernel 𝑚𝑚𝑠𝑠,𝑡𝑡 = �𝜕𝜕𝑈𝑈
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3 We decompose CO2 price into two components
Optimal CO2 price = expected damages + risk premium

Source: Daniel, Litterman & Wagner (NBER October 2018, PNAS 2019), gwagner.com/ezclimate



Epstein-Zin utility allows risk premium to play a significant role
Increased risk aversion increases risk premium relative to expected damages
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Source: Daniel, Litterman & Wagner (NBER October 2018, PNAS 2019), gwagner.com/ezclimate
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Enormous social costs of delay
Cost of delay increases roughly with the square of time

First-period length Annual consumption 
impact during first period

Annual / Total lump-sum 
compensation estimate

5 years 11% ~$5 trillion / ~$24 trillion
10 years 23% ~$10 trillion / ~ $100 trillion
15 years 36% ~$15 trillion / ~$230 trillion

Each year of delay causes the equivalent 
consumption loss over the entire first 
period to increase by roughly 2.3%

Q: How much additional consumption is required throughout the first 
period to bring the utility with first-period mitigation set to zero up to 
the unconstrained level?
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Source: Daniel, Litterman & Wagner (NBER October 2018, PNAS 2019), gwagner.com/ezclimate
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Background



• Model based on Summers & Zeckhauser (2008) to capture climate 
change risk and uncertainty

• Epstein-Zin (1989, 1991)-Weil (1990) preferences to allow separation of 
intertemporal marginal rate of substitution and risk aversion:

𝑈𝑈𝑡𝑡 = 1 − 𝛽𝛽 c𝑡𝑡
𝜌𝜌 + 𝛽𝛽 𝐸𝐸𝑡𝑡 𝑈𝑈𝑡𝑡+1𝛼𝛼 ⁄1 𝛼𝛼 𝜌𝜌 ⁄1 𝜌𝜌

𝜌𝜌 measures agent’s willingness to substitute across time

𝛼𝛼 measures agent’s willingness to substitute across states of nature

• A simple, six-period, recombining tree structure solved numerically

Climate change as a standard asset pricing problem
CO2 in the atmosphere as an asset, albeit with negative payoffs

Source: Daniel, Litterman & Wagner (NBER October 2018, PNAS 2019), gwagner.com/ezclimate



The basic model
Greenhouse gas emissions, and their mitigation, affect damage outcomes

GHG 
Emissions 

Global Temp. 
ChangeGHG Levels Consumption 

Damages

Source: Daniel, Litterman & Wagner (NBER October 2018, PNAS 2019), gwagner.com/ezclimate



The basic model
Greenhouse gas emissions, and their mitigation, affect damage outcomes

GHG 
Emissions 

Global Temp. 
ChangeGHG Levels Consumption 

Damages

Mitigation 
(xt)

Source: Daniel, Litterman & Wagner (NBER October 2018, PNAS 2019), gwagner.com/ezclimate



The basic model
Uncertain relationship between greenhouse gas levels and consumption damages

GHG 
Emissions 

Global Temp. 
ChangeGHG Levels Consumption 

Damages

Mitigation 
(xt)

Agent learns exact link between GHG 
concentrations and damages over time

Source: Daniel, Litterman & Wagner (NBER October 2018, PNAS 2019), gwagner.com/ezclimate



The basic model
Uncertain relationship between greenhouse gas levels and consumption damages

GHG 
Emissions 

Global Temp. 
ChangeGHG Levels Consumption 

Damages

Mitigation 
(xt)

Agent learns exact link between GHG 
concentrations and damages over time

Higher risk aversion, higher mitigation

Source: Daniel, Litterman & Wagner (NBER October 2018, PNAS 2019), gwagner.com/ezclimate



• Discrete time, T + 1 periods
• Base case: agent’s “endowed” consumption �̅�𝐶𝑡𝑡 grows at 1.5%/year
• Agent’s actual consumption:

𝐶𝐶𝑡𝑡 = �̅�𝐶𝑡𝑡 � 1 − 𝐷𝐷𝑡𝑡(𝑋𝑋𝑡𝑡,𝜃𝜃𝑡𝑡) − 𝜅𝜅𝑡𝑡 𝑥𝑥𝑡𝑡
where 𝐷𝐷𝑡𝑡(𝑋𝑋𝑡𝑡 ,𝜃𝜃𝑡𝑡) =  damage, fractional to consumption

𝑋𝑋𝑡𝑡 =  total mitigation through time t

The basic model
Consumption as a function of future climate damages

GHG 
Emissions 

Global Temp. 
ChangeGHG Levels Consumption 

Damages

Mitigation 
(xt)

Solve for xt*
Source: Daniel, Litterman & Wagner (NBER October 2018, PNAS 2019), gwagner.com/ezclimate



𝐶𝐶𝑡𝑡 = �̅�𝐶𝑡𝑡 � 1 − 𝐷𝐷𝑡𝑡(𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 ,𝜃𝜃𝑡𝑡) 1 − 𝜅𝜅𝑡𝑡 𝑥𝑥𝑡𝑡

Allow for technological change of the form:

𝜅𝜅 𝑥𝑥, 𝑡𝑡 = 𝜅𝜅 𝑥𝑥 1 − 𝜑𝜑0 − 𝜑𝜑1𝑋𝑋 𝑡𝑡 𝑡𝑡

where 𝑋𝑋𝑡𝑡 : average mitigation up to time t
𝜑𝜑0 : exogenous technological change
𝜑𝜑1 : endogenous technological change

Note: if 𝜑𝜑1 > 0, a higher level of past mitigation leads to lower cost today

Calibrated cost function
Incorporating technological change into the cost function for emissions mitigation

Source: Daniel, Litterman & Wagner (NBER October 2018, PNAS 2019), gwagner.com/ezclimate



Calibrated cost of mitigation in base case and with assumed backstop
Non-NPV-positive portion of McKinsey (2009), scaled to 2015 and fit to a power function

Source: Daniel, Litterman & Wagner (NBER October 2018, PNAS 2019), gwagner.com/ezclimate



𝐶𝐶𝑡𝑡 = �̅�𝐶𝑡𝑡 � 1 − 𝐷𝐷𝑡𝑡(𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 ,𝜃𝜃𝑡𝑡) 1 − 𝜅𝜅𝑡𝑡 𝑥𝑥𝑡𝑡

Endowed consumption is reduced each period by 
(uncertain) multiplicative Consumption Damage factor:

1 − 𝐷𝐷𝑡𝑡(𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 ,𝜃𝜃𝑡𝑡)

where 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡: Cumulative Radiative Forcing up until time t
𝜃𝜃𝑡𝑡 : characterizes relation between GHGs and 

damages

Damage function
Damage is a function of GHG mitigation and the uncertain link from GHGs to final damages

Source: Daniel, Litterman & Wagner (NBER October 2018, PNAS 2019), gwagner.com/ezclimate



D𝑡𝑡 = (1 − L Δ𝑇𝑇(𝑡𝑡) � 1 − I𝑇𝑇𝑃𝑃 1 − e−TPdamage

non-catastrophic  catastrophic

Damage function components
The damage function is made up of catastrophic and non-catastrophic components

Source: Daniel, Litterman & Wagner (NBER October 2018, PNAS 2019), gwagner.com/ezclimate
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D𝑡𝑡 = (1 − L Δ𝑇𝑇(𝑡𝑡) � 1 − I𝑇𝑇𝑃𝑃 1 − e−TPdamage

non-catastrophic  catastrophic

• The non-catastrophic component captures anticipated 
losses due to temperature changes

• The catastrophic component captures losses due to tail 
events – low probability, potentially high impact

Damage function components
The damage function is made up of catastrophic and non-catastrophic components

Source: Daniel, Litterman & Wagner (NBER October 2018, PNAS 2019), gwagner.com/ezclimate



D𝑡𝑡 = (1 − L Δ𝑇𝑇(𝑡𝑡) � 1 − I𝑇𝑇𝑃𝑃 1 − e−TPdamage

where Δ𝑇𝑇𝑡𝑡(𝑋𝑋𝑡𝑡) : mapping from GHG concentrations to 
temperature change using log-normal 
distribution (Weitzman 2009)

L Δ𝑇𝑇𝑡𝑡(𝑋𝑋𝑡𝑡) : mapping from temperature change to 
damages using displaced gamma 
distribution (Pindyck 2012)

Non-catastrophic damage
Mapping from GHG levels, to temperature change, to expected damages

Source: Daniel, Litterman & Wagner (NBER October 2018, PNAS 2019), gwagner.com/ezclimate



D𝑡𝑡 = (1 − L Δ𝑇𝑇(𝑡𝑡) � 1 − I𝑇𝑇𝑃𝑃 1 − e−TPdamage

In each period, a Poisson process, with a hazard rate based 
on Δ𝑇𝑇𝑡𝑡 governing whether a ‘tipping point’ is hit.

Once a tipping point is hit, the climate remains in a 
‘catastrophic’ state through the final period, which results in 
additional fractional damage to consumption e−TPdamage

Catastrophic damage
Captures the possibility of ‘tipping points’

Source: Daniel, Litterman & Wagner (NBER October 2018, PNAS 2019), gwagner.com/ezclimate



Tipping point probability and resulting damages crucial inputs
Scientific input needed for proper calibration

Probability of damages greater than a 
particular percentage of output, given 
different levels of disaster_tail

Probability of reaching a climatic tipping 
point as a function of peakT

Source: Daniel, Litterman & Wagner (NBER October 2018, PNAS 2019), gwagner.com/ezclimate



• 6 periods
• Recombining tree structure
• Ordered, equal probability states

• Numeric solution, selecting mitigation 
level xt to maximize representative agent’s 
expected utility

• Optimize for CO2 price that implements 
this level of mitigation

Solving the model…
Python code available via gwagner.com/ezclimate

Source: Daniel, Litterman & Wagner (NBER October 2018, PNAS 2019), gwagner.com/ezclimate



‘Recombining’ trees estimate outcome in each stage
Maximize representative agent’s utility, using Epstein-Zin preferences

e.g. 3 paths to this 
node: UUD, UDU
& DUU

Source: Daniel, Litterman & Wagner (NBER October 2018, PNAS 2019), gwagner.com/ezclimate



‘Recombining’ trees estimate outcome in each stage
Maximize representative agent’s utility, using Epstein-Zin preferences

Average mitigation up to a particular 
time & state 

Price per ton of CO2 across time & states 

Source: Daniel, Litterman & Wagner (NBER October 2018, PNAS 2019), gwagner.com/ezclimate



CO2 price sensitive to utility specification for ‘reasonable’ RA values
No difference between CRRA and EZ utility at RA=1.1, large differences for RA>~3

Source: Daniel, Litterman & Wagner (NBER October 2018, PNAS 2019), gwagner.com/ezclimate



2015 CO2 price increases with decreasing 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 and 𝒅𝒅𝒊𝒊𝒊𝒊𝒑𝒑𝒊𝒊𝒊𝒊𝒑𝒑𝒊𝒊_𝒊𝒊𝒑𝒑𝒊𝒊𝒕𝒕
Base case assumes peakT = 6 and disaster_tail = 18

Source: Daniel, Litterman & Wagner (NBER October 2018, PNAS 2019), gwagner.com/ezclimate



Further sensitivity analyses



Increased risk aversion increases CO2 prices
With CRRA utility, high risk aversion implies high discount rate implies lower CO2 price

Source: Return data from Shiller (2000) and since continuously updated: 
http://www.econ.yale.edu/~shiller/data.htm

Epstein-Zin utility separates risk across 
time and states of nature

Log real return for stocks and bonds 
with fitted trend lines

1

Source: Daniel, Litterman & Wagner (NBER October 2018, PNAS 2019), 
gwagner.com/ezclimate



CO2 price in early years first increases then decreases with higher exogenous 
technical change, 𝝋𝝋𝟎𝟎

Source: Daniel, Litterman & Wagner (NBER October 2018, PNAS 2019), gwagner.com/ezclimate



CO2 price decreases with increased endogenous technical change in later 
years

Source: Daniel, Litterman & Wagner (NBER October 2018, PNAS 2019), gwagner.com/ezclimate



CO2 price decreases with backstop, with or without endogenous technological 
change

Source: Daniel, Litterman & Wagner (NBER October 2018, PNAS 2019), gwagner.com/ezclimate



Increasing economic growth, while keep real interest rates constant, 
increases CO2 prices dramatically in early periods

Source: Daniel, Litterman & Wagner (NBER October 2018, PNAS 2019), gwagner.com/ezclimate



Changing economic growth rates, while keeping EIS constant at 0.9,
has little impact on CO2 prices

Source: Daniel, Litterman & Wagner (NBER October 2018, PNAS 2019), gwagner.com/ezclimate



A higher EIS goes hand-in-hand with a higher CO2 price in early years

Source: Daniel, Litterman & Wagner (NBER October 2018, PNAS 2019), gwagner.com/ezclimate



CO2 prices increase (in early years) with decreasing
pure rate of time preference, 𝜹𝜹, holding EIS fixed at 0.90

Source: Daniel, Litterman & Wagner (NBER October 2018, PNAS 2019), gwagner.com/ezclimate



CO2 price increases with decreasing pure rate of time preference, 𝜹𝜹, holding 
real interest rates fixed, while adjusting EIS accordingly

Source: Daniel, Litterman & Wagner (NBER October 2018, PNAS 2019), gwagner.com/ezclimate
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