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Knowing how future climate damages might be distributed in time and space7

is a key research frontier and policy issue for climate scientists, economists, and8

decision-makers. The commonly stated rule of thumb: the more disaggregated9

the data, the higher are the estimated damages [Nordhaus and Yang, 1996, Rudik10

et al., 2022]. Adaptation may change things, with finer-grained data showing in-11

creased capacity to adapt [Heutel et al., 2021]. That opens the question around12

the ‘right’ level of spatial and temporal aggregation for projecting future impacts.13

Aggregation has advantages, as it comes with statistical robustness, clear iden-14

tification of causal relationships, and tractability in aggregated models; it also15

has shortcomings, such as the risk of averaging contradictory effects between re-16

gions in terms of damage and warming patterns, or hiding uncertainties within17

or between climate models. Aggregation, thus, might affect risk ranking between18

models or the magnitude of structural uncertainty across models. Moreover, ag-19

gregation choices can bias results through unobserved mechanisms.20

Projections of climate damages in economic models typically rely on reduced-21

form relationships between climate change and the macroeconomy, which are22

generally based on annual climatic statistics—e.g. mean annual temperatures.23

Furthermore, models are generally aggregated for that climate variable to be24

global—mean annual global temperatures. Even when disaggregating to regional25

levels, economists often use global damage functions, instead of using estimates26

from regional-specific damage patterns. Meanwhile, it seems intuitive that a hot27

day in a relatively warm country has a different impact than the same day in28

a cold country; Heutel et al. [2021] show this to be the case for U.S. counties.29

Moreover, economists often use a linear relationship between global and regional30

climate that boils down to an annual regional statistic. Annual averages only31

imperfectly reflect regional-specific shifts in warming patterns. In North-West32

Europe, for example, hottest summer days are warming twice as fast as mean33

summer days [Garćıa-León et al., 2021, Patterson, 2023].34

To disentangle these effects, we here follow a two-step approach. First, we35
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switch from annual average temperatures to the complete daily temperature dis-36

tribution over a year and show how this step affects the heterogeneous distri-37

bution of warming patterns between regions, compared to a setting where we38

assume a shape-preserving shift in mean annual temperatures under a changing39

climate. Second, we interact these regional-specific shifts in warming patterns40

with regional-specific damage patterns, in comparison with a setting where we41

assume homogeneous damage patterns at the global scale.42

Bias-adjusted and gridded climate projections now allow us to compare counter-43

factual climate to a specific climate scenario at a fine resolution, where ‘climate’ is44

defined as the underlying distribution, from which a specific regional temperature45

distribution over a year is drawn [Waidelich et al., 2023]. A large econometric lit-46

erature has developed in parallel to infer future economic damages from climate47

change using observed historical impact from past weather [Dell et al., 2014,48

Hsiang, 2016, Auffhammer, 2018]. This literature often uses disaggregated daily49

weather data to estimate dose-response functions of an economic variable of inter-50

est to a summary statistics of the high dimensional climate vector [Hsiang, 2016].51

But with the notable exception of Rudik et al. [2022], the climate-economic mod-52

elling literature mostly ignores the shape of region-specific warming and damage53

patterns and instead focuses on global averages either for warming patterns, or54

for damage patterns, or for both, regardless of the level of spatial aggregation—55

from global [Nordhaus, 1994] to regional [Nordhaus and Yang, 1996] and gridded56

[Cruz and Rossi-Hansberg, 2021, Krusell and Smith Jr, 2022]. This aggregation57

might have important consequences, both for establishing our best approximation58

of future damage and in quantifying the uncertainty surrounding this best guess.59

Uncertainties in climate-economic modelling abound [Rising et al., 2022, Kotz60

et al., 2023].61

The quantifiable variance of future projections of climate impacts is affected by62

scenario uncertainty (differences in SSPs), model uncertainty (differences in ESM63

responses to the SSPs), internal variability (spatiotemporally, due to the chaotic64
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nature of the climate and due to regional differences that may be hidden by re-65

gional aggregation), and any choices made in post-processing or bias-correcting66

ESM output (including how finely to apply projected changes in climate distribu-67

tions from ESMs), in addition to regression uncertainty from the impact model,68

and differences between observational data products used to fit the dose-response69

function and act as a baseline to which future ESM output is compared. Histor-70

ically, many studies use global annual average climate variables to estimate and71

project climate damages, thereby ignoring an important source of internal vari-72

ability stemming from regional differences in climate states and from only extract-73

ing mean changes from ESM projections. We quantify the sensitivity of economic74

impact projections to an improved sampling of internal variability (through cap-75

turing regional differences in impacts) and an improved treatment of ESM output76

(by capturing changes in the full shape of the temperature distribution instead77

of annual averages). We take part in uncovering some of the model uncertain-78

ties between climate models using the whole shape of warming patterns that is79

usually reduced by the aggregation procedure on a global and annual scale. We80

provide a framework based on temperature distributions that can be applied to81

other climate data, and a quantification to show how much the regional-specific82

shift in the shape of warming patterns interacting with regional-specific damage83

patterns matter empirically. We then apply this resulting regional climate shift84

uncertainty to the estimation of future climate damages.85

86

We first gather climate and economic data, describe region-specific warming87

patterns for different climate models, and estimate regional damage patterns.88

We here focus on average surface temperatures, though the framework applies89

to any number of different statistics that are usually aggregated from daily to90

annual levels, including e.g. precipitation patterns. In addition, we illustrate our91

argument for the year 2050, which is sufficiently close so as not to superficially92

inflate the results, while also being a relevant time horizon for any number of93
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climate policy considerations. Then, we quantify how much the missing shape-94

related damage of climate change matters for climate policy and provide a simple95

statistics to operationalize the finding.96

Our work yields two main conclusions. First, switching from annual global97

mean temperature to the regional annual distribution of daily mean tempera-98

tures affects the magnitude of the estimates of economic damages: in 2050, under99

SSP5-8.5, using regional damage patterns interacted with the shift in the whole100

shape of the distribution of daily temperatures yields climate damage at the101

global scale that are around 20% larger than the damage obtained under the as-102

sumption of homogeneous damage patterns over the world and a shape-preserving103

shift in annual mean daily temperature. Standard aggregation comes with un-104

derestimation of future climate damages. Second, we show that the standard risk105

ranking expressed as the ranking of temperature anomalies between climate mod-106

els is affected by this shape uncertainty. In SSP5.8-5, the magnitude of scientific107

uncertainty between climate models is even larger than expected, as standard108

uncertainty between models is multiplied by shape uncertainty, which further109

increases dispersion of future possible economic impacts from climate change.110

I. Climate and economic data111

A. Warming patterns112

We compare the distribution of daily mean temperatures in actual climate pro-113

jections to a counter-factual synthetic projection where the shape of the distri-114

bution remains the same while the mean annual temperature increases, a stan-115

dard assumption in the literature. We build different climate landscapes using116

CMIP6 bias-corrected and downscaled data at a resolution of 60 arc-minutes117

from five earth system models (ESM) stored in ISIMIP Protocol 3B [Frieler118

et al., 2023]: GFDL-ESM4, IPSL-CM6A-LR, MPI-ESM1-2-HR, MPI-ESM2-0,119

UKESM1-0-LL. ISIMIP subset of climate models and de-biasing techniques were120

designed to assess impacts of climate change and to span the larger ensemble121
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of CMIP models [Warszawski et al., 2014]. Thus, our illustrative study under-122

estimates inter-model uncertainty among the over 100 CMIP6 models. Data is123

available for three shared socioeconomic pathways (SSP 1-2.6, 3-7.0, 5-8.5). We124

construct four different climate landscapes for each SSP. The first is the climate125

landscape without climate change, the ‘control’ climate: it is the mean distribu-126

tion of ‘picontrol’ time series experiments run over 2006 to 2100 with pre-industrial127

CO2 concentration. The second is the landscape from actual climate projections128

which consists of bias-corrected, downscaled output from five ESMs forced with129

future emissions from three different SSPs, the ‘projection’ climate: we use the130

average of the 10-year distribution around a date to approximately capture the131

underlying distribution from which the specific weather realization from a spe-132

cific year is drawn, i.e. 2045-2055 in our example1. This landscape samples133

scenario uncertainty, inter-model uncertainty, and regionally specific changes in134

the shape of daily mean temperature distributions. The third climate landscape135

is a ‘synthetic-model’ landscape, where we add for each temperature observed in136

the ‘control’ climate of each of the five ESM the mean of the change in annual137

temperature in ‘projection’ climate in this specific ESM. This yields a ESM-138

specific shape-preserving mean-shifted climate. This landscape samples scenario139

uncertainty, inter-model uncertainty, and regional differences in mean changes,140

but keeps the shape of daily mean temperature distributions unchanged. The141

last climate landscape is a ‘synthetic-average’ landscape. The difference with the142

‘synthetic-model’ approach is that we sum the mean ‘control’ climate over all143

ESM and the mean change in annual mean temperature across ESM. This yields144

a mean shape-preserving, mean-shifted climate, which aggregates heterogeneity145

between climate models. This landscape samples scenario uncertainty and re-146

gional differences in mean changes while aggregating across ESMs and keeping147

1On the one hand, adding more years around 2050 would enable us to capture more of the internal
variability which characterizes 2050 climate [Schwarzwald and Lenssen, 2022], for instance more El Niño
cycles. On the other hand, it would come with a costly assumption of perfect symmetry around 2050 in
climate change dynamics. By capturing less internal variability, we probably under-count the impact of
including regional information.
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the shape of daily mean temperature distributions unchanged.148

Rather than aggregating this data at the global scale, we construct regional149

climate landscapes. Indeed, using a global dataset means that locations in which150

a given temperature is relatively cold and places in which the same temperature151

is relatively warm in the two locations fall within the same bin of temperature,152

which distorts the picture of regional climate shifts, and biases the estimates153

used to convert these climate shifts into economic damage. We aggregate at the154

level of five major Köppen regions [Beck et al., 2023]: arid, continental, polar,155

temperate and tropical. It is reasonable to think that these climate classifications156

are both good ensembles in terms of warming patterns but also in terms of damage157

patterns to capture differences between relatively homogeneous regions. If the158

differences between damage patterns differ for many other reasons (e.g. cultural159

and political), we capture some of the regional heterogeneity due to climatic160

conditions. A finer disaggregation would reduce the statistical robustness of the161

estimates we obtain from our econometric specification below because of limited162

sample size and variation. When building these climate landscapes, we keep only163

locations for which we have economic data to estimate dose-response functions164

below and treat each of these economic region within each climatic Köppen region165

as a single unit.166

B. Econometric estimates of climate damages167

For the empirical analysis we combine Wenz et al. [2023]’s Database Of Sub-

national Economic Output (DOSE v2) with Hersbach et al. [2020]’s climate re-

analysis (ERA5). We process the climate reanalysis by first calculating degree-

days at the grid-cell level and then aggregating to DOSE regions. We use the

combined data to estimate global and regional dose-response functions of GDP

growth to daily mean temperatures. We estimate the model:

git = αi + Pitβ +

B∑
b=1

nbitγb + µt + ϵit
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with the growth rate of GDP per capita PPP in USD in administrative unit i in168

year t as git, with the number of days with daily mean temperature in the bin169

indexed b as nbit, and with total annual precipitation Pit. Note that here, Pit170

is indeed only a control, focused on global annual values, rather than regionally171

disaggregated daily ones [Kotz et al., 2022]. The model also includes region172

fixed effects αi and year fixed effects µt. Errors ϵit are clustered at the level173

of countries to account for spatial and temporal autocorrelation. We estimate174

this model for all regions jointly and for each Köppen-Geiger climate zone k175

separately. Our main parameters of interest are the coefficients of temperature176

bins γb (for the global model) and γbk (for the regional models) which represent177

the non-linear association between daily temperature levels and economic growth.178

For the regional model, we use a gridded dataset on Köppen climate regions179

and assign to every administrative unit the share of each climatic zones it is180

included in based on surface area. The 2°C temperature bins are winsorized181

at level 99% for econometric estimation to limit the influence of rare events for182

which we do not have sufficient observations. Furthermore, we follow Cruz and183

Rossi-Hansberg [2021] and smooth the behavior of the point estimates across184

temperature bins on the whole temperature distribution in 2050 with degree-185

two polynomials, assuming that temperature effect on growth changes remains186

constant above and below our upper and lower bins used for the estimation. We187

also weigh each point estimate by the inverse of their standard errors to provide188

a greater weight to the more accurate estimates.189

C. Descriptive statistics190

Figure 1 gives summary statistics for the warming and damage patterns of each191

region in 2050 for SSP5-8.5. Graphs on the left plot the distribution of mean192

daily temperatures for all climate landscapes, taking the average of all five earth193

system models. The distributions have different shapes, both in terms of their194

dispersion and their mean. The shifts in the average temperature are also of195
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different magnitude, which is consistent with the observation of spatially hetero-196

geneous global warming. Shifts in shapes are also diverse, and not just because197

of the initial shape of each distribution as we show on the middle graphs. The198

middle graphs describe the difference between the ‘synthetic-model’ and the ‘pro-199

jection’ landscapes for different earth system models: for each 1°C temperature200

bin, it gives the difference in frequency (in number of days) between two distribu-201

tions. The first distribution is constructed by adding to each daily temperature202

for each climate model the mean of the annual anomaly observed in that model,203

thus obtaining a shape-preserving shift in mean, which is the assumption gener-204

ally made in the literature. The second distribution is taken from climate model205

projections of daily mean temperatures. These difference can have opposite signs206

and various magnitude depending on the model considered. The graphs on the207

right present the minimum, central and maximum estimates of the two global208

and regional dose-response functions of GDP growth rate to an additional day in209

a given bin in comparison with a day in the [20 : 22°C] bin, estimated for each210

region. Our regional dose-response functions reveals different damage patterns211

than the global dose-response function. For instance, while the positive effect212

of colder temperatures on GDP growth in the global functions stills holds with213

regional estimates in the continental areas, the sign of this effect is reversed for214

polar and temperate areas. For warmer days, in relatively warmer areas, the215

effect of higher temperatures goes in both directions, i.e. positive effect for arid216

areas, negative effects for tropical areas, while it is flat in our global estimate217

that conflates both climatic zones. Disentangling global and regional damage218

patterns matter for climate policy because it provides a more accurate picture of219

the spatial and temporal heterogeneity in future climate damage.220

More details on the climate shift are given in the heatmap in Figure 3. We221

plot the number of days under actual projections that are both outside synthetic222

climate and above the median of its distribution. It is negative (positive) when223

there are less (more) days in projections that are above the median of synthetic224
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Figure 1. : Left Distribution of daily mean temperatures for four climate land-
scapes. Middle Distribution of climate shift, i.e. difference in distribution of
daily mean temperatures under projection vs. a synthetic-model climate. Right
Change in growth rate from one day in this bin relative to one additional day in
[20°C : 22°C]. Data are for all DOSE regions, SSP5-8.5, 2050.

climate. There is no clear sign for this climate shift: climate projections are not225

unequivocally more right-skewed than the synthetic approach. The sign of the226

shift is reversed depending on the climate model used.227
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II. Quantification228

A. Missing shape-related growth effect of climate change229

We express the GDP growth effect of daily temperatures in climate projections230

as a share of this effect in synthetic climate, i.e. in a setting where we assume that231

the shape of the distribution of daily temperatures remains the same when the232

mean increases. Indeed, we want to measure how much the change in the shape of233

the distribution of daily mean temperatures matter for the estimation of economic234

damages. To have a measure that approaches standard climate damages, growth235

effects in warming climates are expressed with respect to growth effects in control236

climate. Growth effect at each 1°C bin b is γb (γbk) if we use global (regional)237

dose-response functions, where k stands for a Köppen-Geiger climate zone. The238

global growth effect Ω for a given SSP and year in our climate landscape C for239
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a given dose-response function in subadministrative region DOSE d in Köppen-240

Geiger climate zone k is:241

Ωglob,C
ymd =

(
∑

b γbt
C
bymd−

∑
b γbt

control
bymd )∑

b γbt
control
bymd

, Ωreg,C
ymdk =

(
∑

b γbkt
C
bymdk−

∑
b γbrt

control
bymdk )∑

b γbdkt
control
bymdk

Then, we apply a double difference procedure to find the change in growth242

effect between synthetic climate and projections. For damage function γ, and243

synthetic climate: DDω
ymdk = 100 ∗ (Ωω,projection

ymdk − Ωω,synthetic
ymdk )/Ωω,synthetic

ymdk , with244

ω ∈ {global, regional}. This estimate expresses the share the missing shift in245

shape represents in the standard estimates of damages assumed from shape-246

preserving synthetic shift in mean. We summarize the values of this estimate247

for various specifications in Figure 3 below which disentangles various layers of248

uncertainty. On the top left graph, we plot the dispersion in our DD estimate249

for each Köppen climatic region and each SSP, for each ESM (in blue) and the250

average over ESM (in red). This graph captures how for each region the differ-251

ences between SSP and between climate models drives the impact omitting the252

whole shape of warming pattern has on the assessment of damages. There is an253

important climate model uncertainty. Outside continental areas, depending on254

the climate model used, the sign of the difference between the standard assump-255

tion and the full shape of the distribution is either positive or negative. Part256

of this structural uncertainty between climate models is already captured when257

comparing climate models at the aggregate annual scale. Thus, on the bottom258

left graph, we plot the dispersion between two methods to build our synthetic259

climate: either using the model-specific control climate and mean aggregate tem-260

perature increase to build the new synthetic benchmark, or using the average over261

different ESM. On the top right graph, we plot the difference in our estimates262

depending on the dose-response function of GDP growth to daily temperatures263

that is used: either the global dose-response function which combines potentially264

contradictory effects of changes in temperature distribution over space, or the265
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regional estimates which might capture part of the spatial heterogeneity in dam-266

age patterns. On the bottom right graph, we plot our coefficient for the central,267

minimum and maximum estimates of the regional dose-response function to mea-268

sure how much parametric uncertainty for a given damage function specification269

matters in comparison with structural uncertainty about the damage function,270

i.e. either global or regional. The main source of uncertainty that is hidden un-271

der the assumption of a shape-preserving mean-shifted synthetic climate stems272

from structural uncertainty across climate models, i.e. heterogeneity in projected273

regional warming patterns, and structural uncertainty about the shape of damage274

patterns, i.e. global versus regional damage estimations.275

B. Simple statistics for policy-makers276

While we build regional climate landscapes that use the granularity given in277

climate datasets rather than too aggregated information to discuss climate pol-278

icy, we seek for global indicators that can easily be applied to aggregate economic279

models. We compute for each DOSE region within each larger Köppen-Geiger280

zone the share of missing growth due to disaggregated warming and damage pat-281

terns, either using 2020 GDP [Kummu et al., 2018], or using SSP scenario to282

compute 2050 GDP of each DOSE region [Wang and Sun, 2022]. We aggregate283

the DOSE-level growth effect to the global scale based on the share of each zone284

in global GDP. We use the synthetic-model approach to build a synthetic climate,285

assuming that aggregate uncertainty between climate model is already taken into286

account in the literature studying aggregate annual mean temperatures. Indeed,287

our study focuses on one channel of uncertainty: the interactions between intra-288

annual warming patterns and damage patterns at the regional scale. On left graph289

in Figure 4, we plot our estimate of the share of missing growth effects with two290

approaches: either 2020 GDP or GDP taken from SSP. The underestimation is291

around 20% lower using SSP projections. On the graph in the middle, we plot292

our global DD for various ESM and the mean across ESM under regional dam-293
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ages. The dispersion between climate models is larger than the dispersion across294

economic scenarii. On the right graph, we plot global DD for two specifications of295

the dose-response function: either global or regional. Structural uncertainty on296

the damage function matters as the underestimation is around seven times larger297

under regional estimates than under global estimates across the three SSP.
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Figure 4. : Left Global DD under synthetic-model approach for two aggregation
methods, either with 2020 fixed weights or with SSP scenario, for regional dam-
ages, average over climate models Middle Global DD for each climate model and
their average with SSP aggregation method, regional damages Right Global DD
for each dose-response function and average climate model with SSP aggregation
method, regional damages.

298

The assumption made in the literature of a shape-preserving shift in mean an-299

nual global temperature interacted with global damage patterns thus yields biased300

estimates of future economic damages of climate change. For all climate models301

and across various specifications of damage patterns and economic scenarios, this302

bias is an underestimation of future damages: accounting for the shift in regional303

shape would increase the actual damage by 21.3% under SSP5-8.5 in 2050. The304

shift in shape matters also for less carbon-intensive pathways: the underestima-305

tion is of 17.5% (25.8%) under SSP1-2.6 (SSP3-7.0). Both uncertainty between306

climate models on the shape of regional warming patterns and uncertainty on the307
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damage patterns matter. Their interaction is likely to significantly alter the tem-308

poral and spatial distribution of the economic damage caused by climate change.309

This modified picture changes mitigation and adaptation policies.310

311

Part of the dispersion between models highlighted above, which is linked to the312

complete shape of the daily temperature distribution, is generally hidden when313

we focus on annual average temperatures. This, in turn, is likely to change risk314

ranking between models. It can also change the magnitude of uncertainty be-315

tween models. In other words, annual global mean temperature is not a sufficient316

statistic for climate model uncertainty regarding mean temperatures. In Figure 5,317

we plot the ranking of each climate model for two measures: the share of under-318

estimated damages highlighted above and the annual mean temperature anomaly319

in 2050 for each SSP and at the global scale for all DOSE regions [Wenz et al.,320

2023].

0 1 2 3 4 5

SSP 5-8.5: damage

SSP 5-8.5: anomaly

SSP 3-7.0: damage

SSP 3-7.0: anomaly

SSP 1-2.6: damage

SSP 1-2.6: anomaly

0 10 20 30 40 50

°C Anomaly

% of damage underestimated

Ranking

Temperature anomaly
Underestimated damage

ESM

GFDL
IPSL
MPI
MRI
UK

Figure 5. : Risk ranking between climate models for all SSP and all DOSE regions
for two key measures: (1) the share of underestimated damage computed with
our methodology, (2) the temperature anomaly (in °C).

321
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The ranking is not always the same: in SSP1-2.6 for instance, GFDL projects322

the lowest change in temperature anomaly but the distribution of daily tempera-323

tures in GFDL is the one that deviates furthest from the synthetic distribution,324

which assumes that the shape of the distribution of daily mean temperatures325

remains the same. Risk ranking between models in terms of climate impact is326

likely to be modified in this case. In SSP5.8-5 on the other hand, MPI and UK327

are the lowest and highest among models for both metrics, which suggest that328

risk ranking might remain the same, but the magnitude of climate uncertainty329

between models increases as both uncertainties interact. Indeed, UK has the high-330

est temperature anomaly over DOSE regions, and the aggregate climate damage331

computed from this anomaly is multiplied by the largest underestimated share of332

damage due to climate shift in the shape of the daily temperatures distribution.333

III. Conclusion334

If climate-society relationships were linear, then aggregating would not make335

any difference. But since they are nonlinear, what happens at the regional level336

matters. Indeed, switching from annual global mean temperature to a regional337

annual distribution of daily mean temperatures affects the sign and magnitude338

of economic damages from climate change. This change comes from heterogene-339

ity in both damage and warming patterns across regions. Disaggregating, thus,340

reveals how uncertainty between climate models on the whole shape of the distri-341

bution of future weather realizations cascades down to regional damage estimates.342

This shape uncertainty affects risk rankings acros models and increases the magni-343

tude of uncertainty between models. Moreover, accounting for daily temperatures344

rather than annual averages increases the estimation of economic damages, a find-345

ing consistent with previous studies [Rudik et al., 2022]. In 2050, under SSP5-8.5,346

using regional damage patterns interacted with the shift in the entire shape of the347

distribution of daily temperatures, yields climate damages at the global scale that348

are 20% larger than the damage obtained under the assumption of homogeneous349
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damage patterns over the world and shape-preserving shift in annual mean daily350

temperature. Climate model uncertainty and damage uncertainty matter more351

in our setting than economic uncertainty about the share of each region in world352

GDP in 2050. The shape uncertainty about shifts in daily temperature distribu-353

tions and regional damage patterns should therefore be taken into consideration354

for decision-making.355

To our knowledge, we provide the first comparison between various approaches356

to spatial and temporal aggregation regarding impacts of changes in mean surface357

temperatures on economic activity and quantify how much these often-overlooked358

aggregation procedures matter empirically. We believe that this procedure can359

be reasonably translated horizontally and vertically. Vertically, this framework360

can be applied to other economic damages stemming, for instance, from changes361

in maximum or minimum daily temperatures. Horizontally, the framework can362

be used to infer results in regions for which we do not have socioeconomic data363

to estimate damage functions.364

Our analysis also comes with limitations. In particular, our estimation of re-365

gional damage functions is based on the idea that differences in the economic dam-366

age caused by weather—and therefore by climate change—is intimately linked to367

climatic zones. However, there are many factors that go well beyond geographical368

determinism that we do not explore here. Furthermore, Earth System Models are369

imperfect, and some may not be able to capture well the shape (or changes in the370

shape) of the temperature distribution [Kornhuber et al., 2023]. Finally, while371

we studied variations of warming patterns in space and time, and variation of372

damage patterns in space, we have left out the question of variation of damage373

patterns in time under a ‘swinging climate’ [Mérel et al., 2024]—i.e. adaptation374

to shifts in climate. How might a given daily temperature yield different damages375

in any particular region under a different climate, as the region moves away from376

its normal climatic zone? Lastly, that raises the question of how adaptation might377

interact with the entire distribution of climatic factors, a question left for further378
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research.379
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Appendix A. Building climate landscapes459

We scale the frequency of observations by the share of land area in each cell460

using GPW4 dataset. We compare changes in shapes of daily mean temperature461

distributions Tmr in 5 Koppen regions r and climate model m, i.e. the distribution462

of all tbymr daily mean temperatures in year y, bin b, region r, model m, in463

four different climates C ∈ {control, projection, synthetic − model, synthetic −464

average}.465

• Control climate, without climate change T control
mr466

• ISIMIP projections T projection
mr467

• Synthetic model with model average468

tsynthetic−model
bymr = tcontrolbymr +meanb(t

projection
bymr − tcontrolbymr )469

• Synthetic model with total average470

tsynthetic−average
byr = meanm(tcontrolbyr ) +meanbm(tprojectionbymr − tcontrolbymr )471

Let us define a climate shift indices: CSIbymr = tprojectionsbymr − tsynthetic−model
bymr .472

473

The Köppen region of use are:474
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Köppen regions
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TROPICAL

Figure 6. : Köppen climatic zones.

Appendix B. Some graphs475
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Figure 7. : SSP1-2.6 Left Distribution of daily mean temperatures for four dif-
ferent climate landscapes. Middle Distribution of climate shift, i.e. difference in
distribution of daily mean temperatures under projection vs. a synthetic-model
climate. Right Change in growth rate from one day in this bin relative to one
additional day in [20°C : 22°C].

Appendix D. Final statistics476

We give the values for the share of each climatic region in GDP for different477

scenarii used in this paper: either fixed 2020 GDP share, or SSP-dependent GDP478

share. From GDP gridded data at 5 arc-min resolution: GDP is upscaled based479

on surface area for grid zones that are spread over several Köppen regions.480
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Figure 8. : Heatmaps for SSP1-3.6 year 2050 actual climate projections, for all
climate models and regions. Number of days both outside the synthetic-climate
distribution and above its median.

Table 1—: Share of each Köppen-Geiger zone k in world’s GDP under various
assumptions

Region Arid Continental Polar Temperate Tropical
2020 0.17 0.206 0.003 0.479 0.142
SSP1 0.176 0.158 0.002 0.444 0.22
SSP3 0.188 0.169 0.002 0.446 0.196
SSP5 0.178 0.16 0.002 0.441 0.219



CLIMATE SHIFT UNCERTAINTY AND ECONOMIC DAMAGES 27

0

20

40

60

-50 0 50

Distribution of daily mean temperatures

-40

-20

0

20

-50 0 50

Distribution of climate shift

-0.002

0.000

0.002

-75 -50 -25 0 25 50

Change in growth rate relative to [20°C:22°C]
ARID

0

20

40

60

-50 0 50
-40

-20

0

20

-50 0 50

-0.002

0.000

0.002

-75 -50 -25 0 25 50

CONTINENTAL

0

20

40

60

-50 0 50
-40

-20

0

20

-50 0 50

-0.002

0.000

0.002

-75 -50 -25 0 25 50

POLAR

0

20

40

60

-50 0 50
-40

-20

0

20

-50 0 50

-0.002

0.000

0.002

-75 -50 -25 0 25 50

TEMPERATE

0

20

40

60

-50 0 50
Daily mean temperature (1°C bin)

Landscape Control Proj. Synth. General Synth. Model

-40

-20

0

20

-50 0 50
Daily mean temperature (1°C bin)

ESM GFDL IPSL MPI MRI UK

-0.002

0.000

0.002

-75 -50 -25 0 25 50
Daily mean temperature (1°C bin)

Estimates Central Max Min Scale Global Regional

TROPICAL

Figure 9. : SSP3-7.0 Left Distribution of daily mean temperatures for four dif-
ferent climate landscapes. Middle Distribution of climate shift, i.e. difference in
distribution of daily mean temperatures under projection vs. a synthetic-model
climate. Right Change in growth rate from one day in this bin relative to one
additional day in [20°C : 22°C].
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