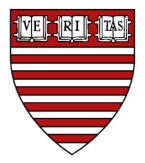
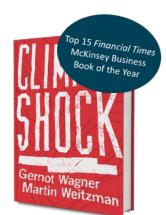
Carbon prices, preferences, and the timing of uncertainty



William W. Hogan

William_Hogan@harvard.edu whogan.com



Gernot Wagner

gwagner@fas.harvard.edu gwagner.com

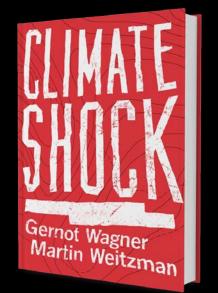
~\$40 Social Cost of CO₂

Based on 3% constant discount rate, and an average of 3 climate-economy models, including DICE

Discount Rate Year	5.0% Avg	3.0% Avg	2.5% Avg	3.0% 95th
2010	11	32	51	89
2015	11	37	57	109
2020	12	43	64	128
2025	14	47	<mark>6</mark> 9	143
2030	16	52	75	159
2035	19	56	80	175
2040	21	61	86	191
2045	24	66	92	206
2050	26	71	97	220

~\$40 Obama White House SC-CO₂ > 10x official Trump figure

Source: "Technical Update of the Social Cost of Carbon for Regulatory Impact Analysis Under Executive Order 12866" (November 1, 2013; updated 2016).



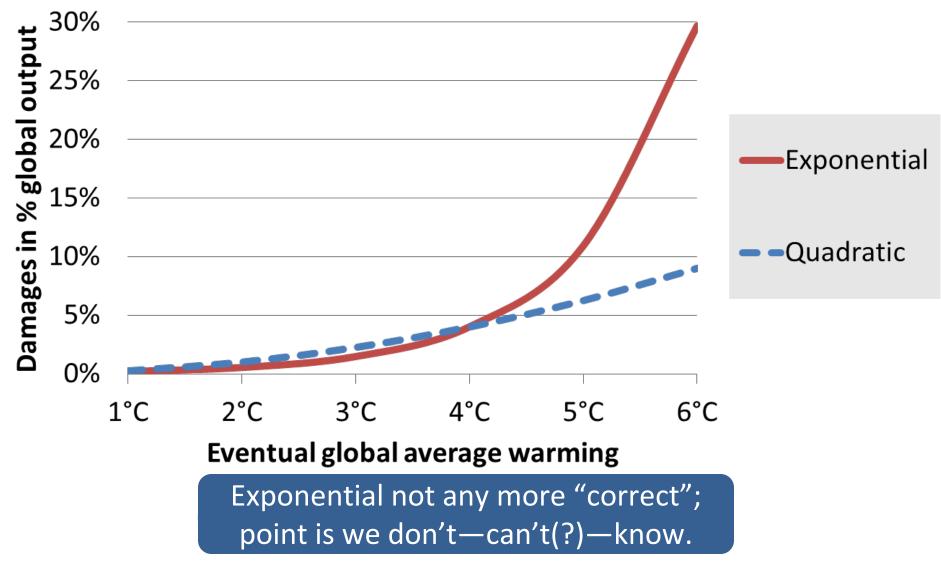
>>\$40, two ways:

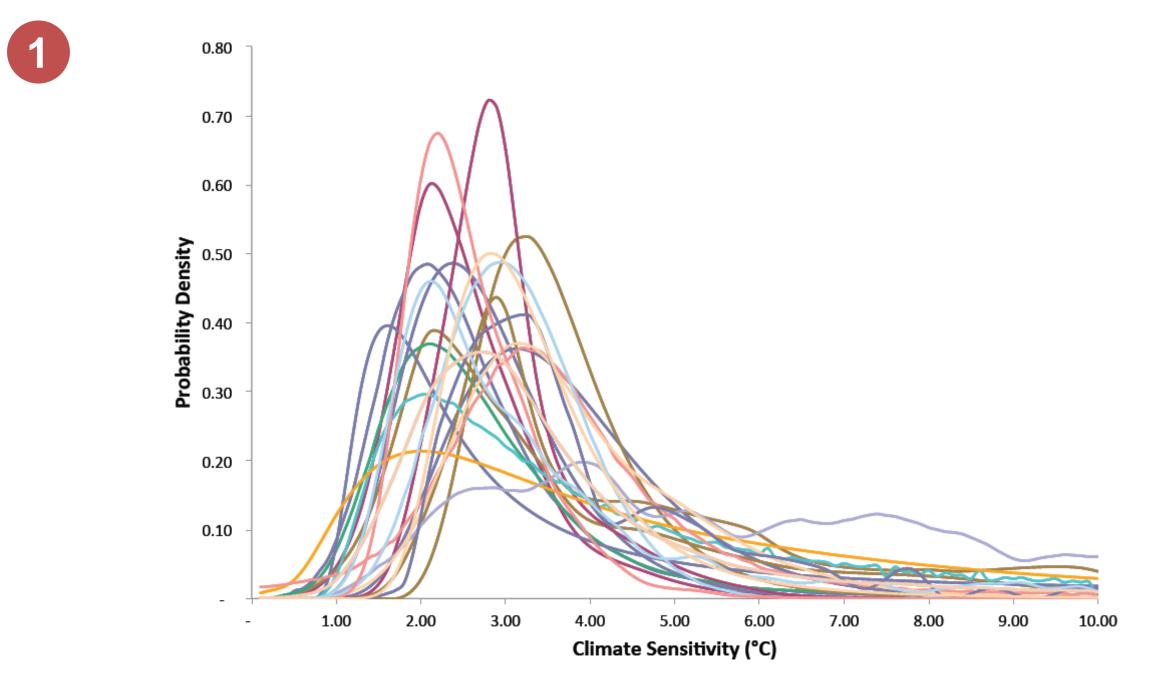
1 Tail risk

² "Proper" preference calibration

Choice of damage function critical

Integrated Assessment Models beginning with Nordhaus (1992) have assumed quadratic damage extrapolations

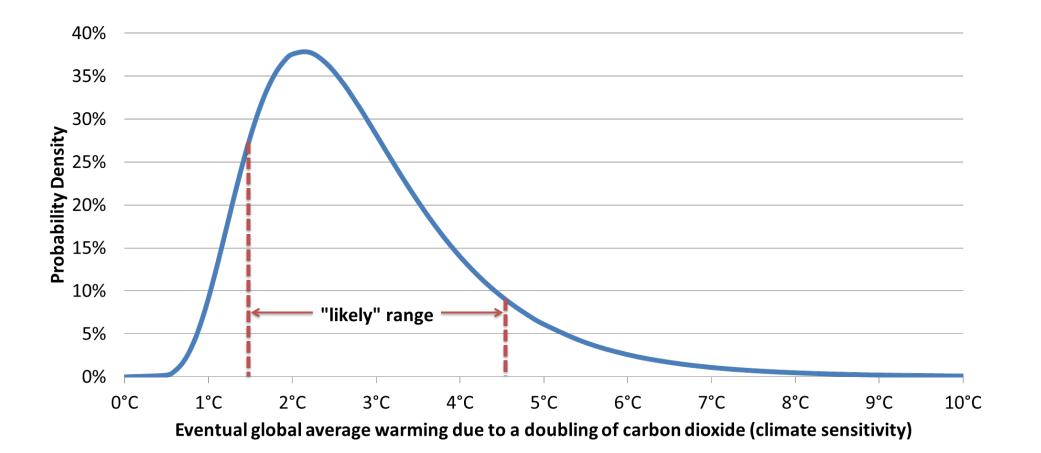




Source: Meinshausen et al (2009)

IPCC's "likely" range 1.5-4.5°C

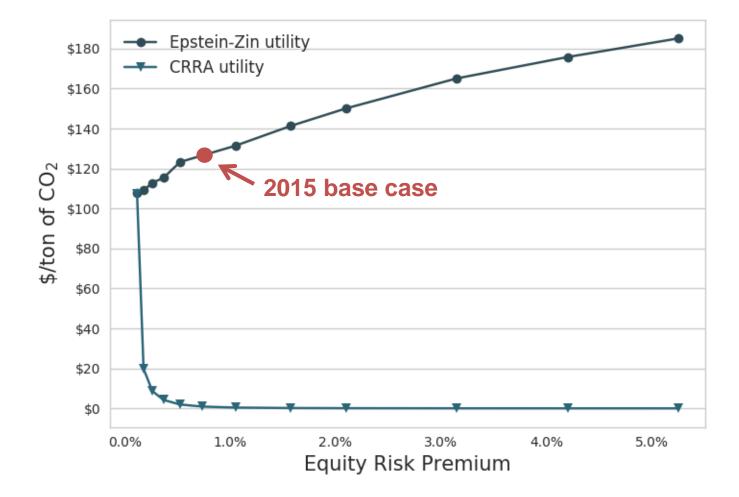
'Heavy-tailed' climate sensitivity calibration using log-normal, mirroring effects of Roe-Baker



Tail risk might dwarf importance in "likely" range

Standard utility specifications misrepresent (climate) risk

Constant Relative Risk Aversion (CRRA) utility conflates risk across time and across states of nature



9

Two critical examinations:

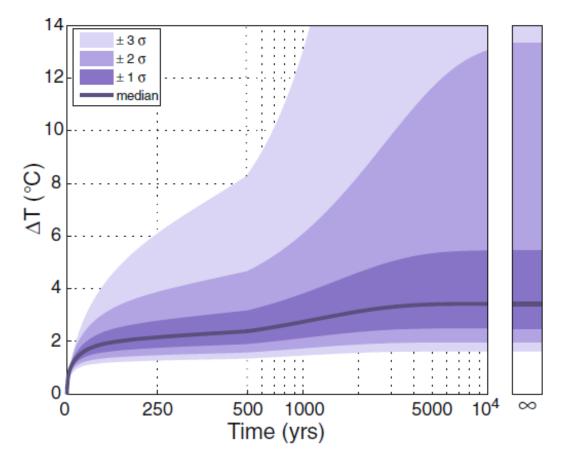
1 "Roe-Bauman" time component

2 Closer look at discounting

Roe-Bauman critique of "fat tails" argument

"Climate sensitivity: should the climate tail wag the policy dog?"

"Fig. 2 a The time evolution of uncertainty in global temperature in response to an instantaneous doubling of CO_2 at t = 0, and for standard parameters. The shading reflects the range of feedbacks considered (symmetric in feedbacks, but not in climate response), as explained in the text. Note the change to a logarithmic x-axis after t = 500 yr. The panel illustrates that for high climate sensitivity it takes a very long time to come to equilibrium." (Roe & Bauman, 2013, p. 651)

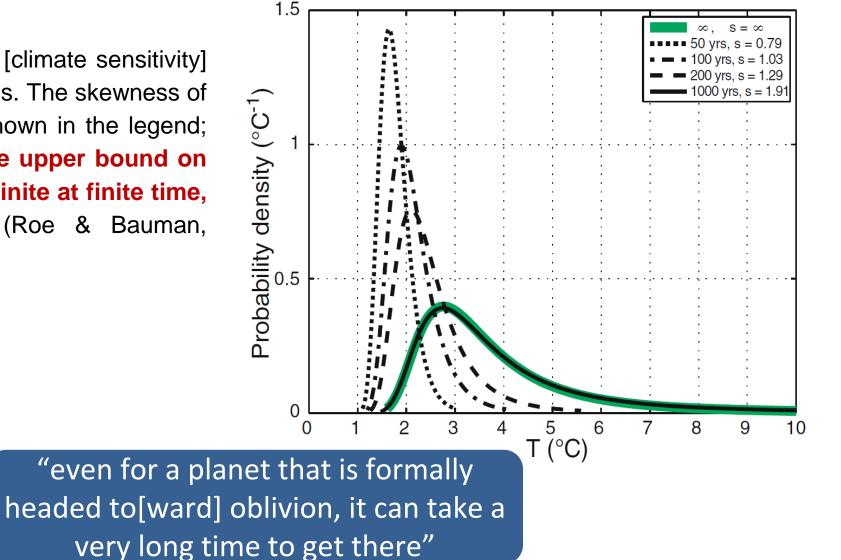


The farther out the climate damage, the more discounting matters

Roe-Bauman critique of "fat tails" argument

"Climate sensitivity: should the climate tail wag the policy dog?"

"Fig. 2 b The shape of the [climate sensitivity] distribution at particular times. The skewness of the distributions are also shown in the legend; as described in the text, the upper bound on possible temperatures is finite at finite time, limiting the skewness" (Roe & Bauman, 2013, p. 651)



Does the Roe-Bauman (RB) critique matter?

1

Does the separation of risk and time *a la* Epstein-Zin (EZ) matter?

We build "DICE-EZ-RB" to help answer these questions

Source: Hogan & Wagner (Mimeo)

Rough Roe-Baker ECS calibration

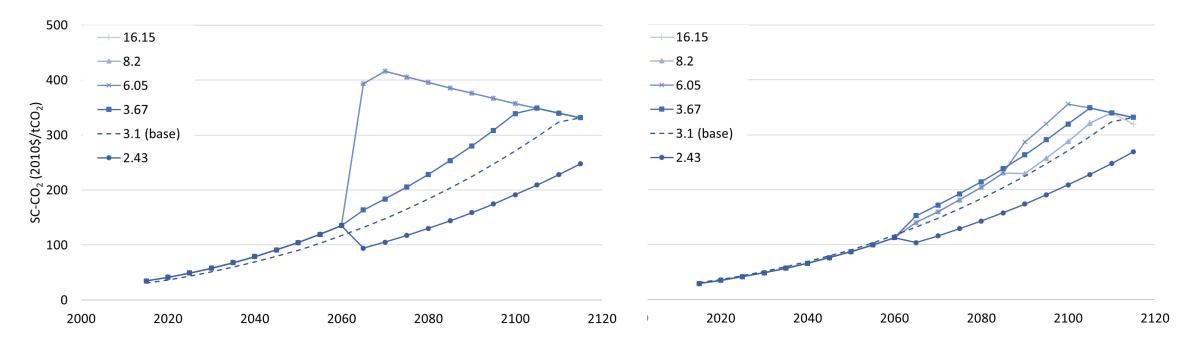
Recursive DICE-EZ implementation calls for simple scenarios: 5 scenarios, with ECS uncertainty resolved in 50yrs (2065)

0.60 0.50 0.50 0.40 0.40 Probability 0.30 0.20 0.05 0.10 0.03 0.02 0.00 0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 ECS °C

ECS Distribution

Roe-Bauman time dynamics dramatically reduce SC-CO₂ uncertainty

SC-CO₂ smaller in expectations, less uncertain after resolution of uncertainty



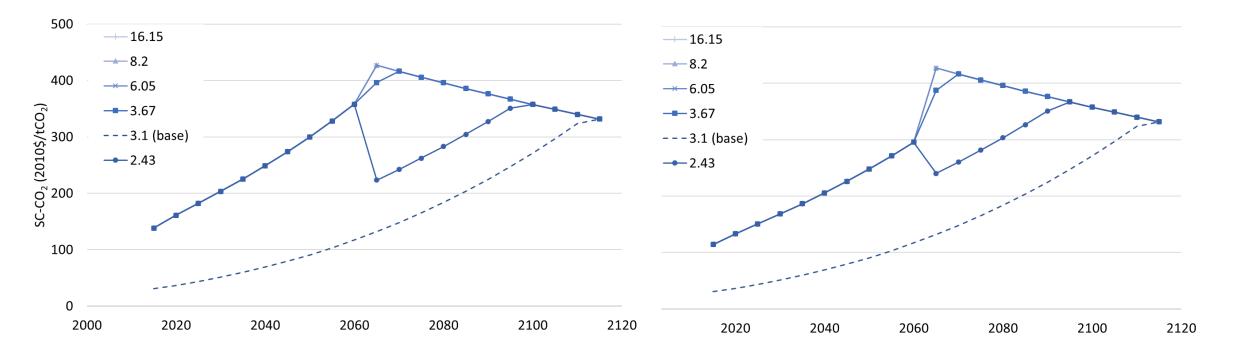
DICE with Roe-Baker tail uncertainty

DICE with Roe-Bauman time dynamics

Tail risks much less significant, given time interaction (discounting!) ⁸ 2 Impact of EZ preferences much larger than RB dynamics Initial SC-CO₂ jumps to over \$100

DICE-EZ

1



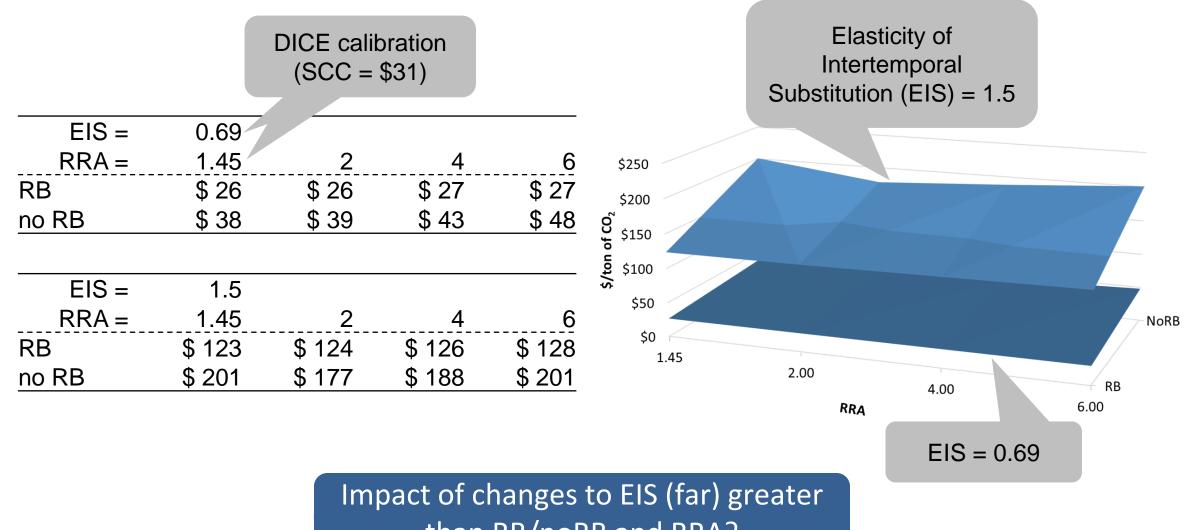
DICE-EZ-RB

Switch to EZ appears to have large impact on SC-CO₂

Source: Hogan & Wagner (Mimeo)

Roe-Bauman (RB) time-delay decreases SCC by >30%

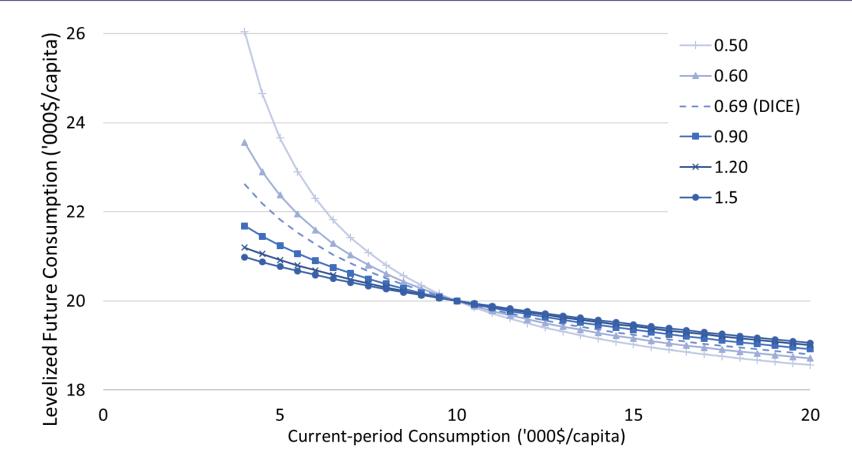
DICE calibration (EIS = 0.69 and RRA = 1.45) changes from \$31



than RB/noRB and RRA?

Elasticity of Intertemporal Substitution (EIS) drives all

SC-CO₂ very sensitive to EIS parameters; EIS meanwhile, anywhere from ~0.50 to >1.5 (Thimme 2017)



What's the right EIS? aka There appears to be no escaping economics' philosophical roots.

Gernot Wagner gwagner@fas.harvard.edu gwagner.com

Backup

"DICE-EZ-RB" based on DICE with modified utility & calibration (1/2)

Based on Ackerman et al. (2013) and Roe & Bauman (2013), and Nordhaus (2013, 2016)

Epstein-Zin utility:

$$U_{t} = \left[\left(1 - \beta \right) c_{t}^{\rho} + \beta \left(\mu_{t} \left[U_{t+1} \right]^{\rho} \right) \right]^{\frac{1}{\rho}}$$
$$\mu_{t} \left[U_{t+1} \right] = \left(E_{t} \left[U_{t+1}^{\alpha} \right] \right)^{\frac{1}{\alpha}}$$

modified to allow for intra-period uncertainty in consumption:

$$U_{t} = \left[\left(1 - \beta \right) \mu_{t} \left(c_{t} \right)^{\rho} + \beta \left(\mu_{t} \left[U_{t+1} \right]^{\rho} \right) \right]^{\frac{1}{\rho}}$$
$$\mu_{t} \left[U_{t+1} \right] = \left(E_{t} \left[U_{t+1}^{\alpha} \right] \right)^{\frac{1}{\alpha}}$$
$$\mu_{t} \left[c_{t} \right] = \left(E_{t} \left[c_{t}^{\alpha} \right] \right)^{\frac{1}{\alpha}}$$

Utility of c_t is uncertain in each period, not just in its present value Modify temperature pathway from " ΔT_{DICE} " to " $\Delta T'$ " in: $T_{AT}(t) = T_{AT}(t-1) + \xi_1 \{F(t) - \xi_2 T_{AT}(t-1) - \xi_3 [T_{AT}(t-1) - T_{LO}(t-1)]\}$ $T_{LO}(t) = T_{LO}(t-1) + \xi_4 [T_{AT}(t-1) - T_{LO}(t-1)].$

by scaling parameters, e.g.:

$$\xi_{2}' = \xi_{2} \left(\frac{\Delta T'}{\Delta T_{DICE}} \right)^{-1} \qquad \qquad \xi_{3}' = \xi_{3} \left(\frac{\Delta T'}{\Delta T_{DICE}} \right)^{\lambda_{RB}}$$

We instead scale based on fraction of asymptotic adjustment; i.e. time it takes to get to 1 - 1/e, or ~ 63 %. \rightarrow Choose parameters ξ'_1, ξ'_3, ξ'_4 to minimize squared deviation from DICE parameters: $T(ECS, n) < (n)^2$

$$\frac{T(ECS, p)}{T(3.1, p)} = \left(\frac{y}{3.1}\right)^2$$

Source: Hogan & Wagner (Mimeo)