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~$40 Social Cost of CO,

Based on 3% constant discount rate, and an average of 3 climate-economy models, including DICE

Discount Rate 5.0% 3.0% 2.5% 3.0%
Year Avg Avg Avg 95th
2010 11 32 51 89
2015 11 é 37 D 57 109
2020 12 43 64 128
2025 14 47 69 143
2030 16 52 75 159
2035 19 56 80 175
2040 21 61 86 191
2045 24 66 92 206
2050 26 71 97 220

~S$40 Obama White House SC-CO,

> 10x official Trump figure

Source: “Technical Update of the Social Cost of Carbon for Regulatory Impact Analysis Under Executive Order 12866” (November 1, 2013; updated 2016).



http://www.whitehouse.gov/sites/default/files/omb/assets/inforeg/technical-update-social-cost-of-carbon-for-regulator-impact-analysis.pdf




>>%$40, two ways:

D Tall risk

2 “Proper” preference calibration



Choice of damage function critical
Integrated Assessment Models beginning with Nordhaus (1992) have assumed quadratic damage extrapolations
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Source: Wagner & Weitzman ‘s Climate Shock (2015)
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IPCC’s “likely” range 1.5-4.5°C

‘Heavy-tailed’ climate sensitivity calibration using log-normal, mirroring effects of Roe-Baker
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Standard utility specifications misrepresent (climate) risk

Constant Relative Risk Aversion (CRRA) utility conflates risk across time and across states of nature
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Two critical examinations:

1 “Roe-Bauman” time component

2 Closer look at discounting



Roe-Bauman critigue of “fat tails” argument
“Climate sensitivity: should the climate tail wag the policy dog?”

“Fig. 2 a The time evolution of uncertainty in
global temperature in response to an
instantaneous doubling of CO, at t = 0, and for
standard parameters. The shading reflects the
range of feedbacks considered (symmetric in
feedbacks, but not in climate response), as
explained in the text. Note the change to a
logarithmic x-axis after t = 500 yr. The panel
illustrates that for high climate sensitivity it
takes a very long time to come to
equilibrium.” (Roe & Bauman, 2013, p. 651)
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Roe-Bauman critigue of “fat tails” argument
“Climate sensitivity: should the climate tail wag the policy dog?”

“Fig. 2 b The shape of the [climate sensitivity]
distribution at particular times. The skewness of
the distributions are also shown in the legend,;
as described in the text, the upper bound on
possible temperatures is finite at finite time,
limiting the skewness” (Roe & Bauman,
2013, p. 651)
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Carbon prices, preferences, and the timing of uncertainty
3 questions

0 Does the Roe-Bauman (RB) critique matter?

Does the separation of risk and time a la Epstein-Zin (EZ)
matter?

e&g What about the combination of the two?

We build “DICE-EZ-RB” to help answer

these questions

Source: Hogan & Wagner (Mimeo)



G*Rough* Roe-Baker ECS calibration

Recursive DICE-EZ implementation calls for simple scenarios: 5 scenarios, with ECS uncertainty resolved in 50yrs (2065)
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SC-CO, (20108/tCO,)

Roe-Bauman time dynamics dramatically reduce SC-CO, uncertainty

SC-CO, smaller in expectations, less uncertain after resolution of uncertainty

DICE with Roe-Baker tail uncertainty
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Impact of EZ preferences much larger than RB dynamics
Initial SC-CO,, jumps to over $100
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Roe-Bauman (RB) time-delay decreases SCC by >30%
DICE calibration (EIS = 0.69 and RRA = 1.45) changes from $31

DICE calibration Elasticity of

(SCC = $31) Intertemporal
Substitution (EIS) = 1.5
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Impact of changes to EIS (far) greater

than RB/noRB and RRA?

Source: Hogan & Wagner (Mimeo)



Elasticity of Intertemporal Substitution (EIS) drives all
SC-CO, very sensitive to EIS parameters; EIS meanwhile, anywhere from ~0.50 to >1.5 (Thimme 2017)
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Backup



“DICE-EZ-RB” based on DICE with modified utility & calibration (1/2)
Based on Ackerman et al. (2013) and Roe & Bauman (2013), and Nordhaus (2013, 2016)

Epstein-Zin utility:
U, :|:(1_ﬂ)ctp+ﬂ(ﬂt [Ut+1]p):|

A, [Ut+1] = (Et I:Utoil])%[

%

modified to allow for intra-period uncertainty in consumption:

U, =[(1—ﬁ)ﬂt (c)” +ﬂ(ﬂt [Ut+1]p)}%
Hy [Ut+1] :(Et [Utﬁl})%

H, [Ct] - (Et [Cta])%l

Utility of c,is uncertain in each period,

not just in its present value

Source: Hogan & Wagner (Mimeo)



“DICE-EZ-RB” based on DICE with modified utility & calibration (2/2)
Based on Ackerman et al. (2013) and Roe & Bauman (2013), and Nordhaus (2013, 2016)

Modify temperature pathway from “ATp;cg" t0 “AT" in:

T (1) =Tar (=) +E{F ()= &Tr (t-1) =& [ T (t-1) T, (t-1) ]}
Tio (1) =Tio (t=1)+ & [ Tur (t-1)-To (t-1)].

by scaling parameters, e.g.:

-1 Are
, AT , AT’
52 — 52 ( j 53 - 53 [ ]
AToice ATpice

We instead scale based on fraction of asymptotic adjustment; i.e.
time it takes to getto 1 — 1/e, or ~ 63 %.

- Choose parameters &5, &3, &, to minimize squared deviation from
DICE parameters: T (ECS, p) ( v ¥
_ ij

T(3.1p)

Source: Hogan & Wagner (Mimeo)
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