Mitigation, Carbon and Solar Geoengineering Over Time

Mariia Belaia, David Keith, Gernot Wagner (Work in progress)

29 June 2018

Four climate policy instruments

1 Mitigation & SRM

Gramstad and Tjotta (2010), Moreno-Cruz and Keith (2013), Bickel (2013), Emmerling and Tavoni (2017), Heutel et al. (2018)

- Mitigation & Adaptation & SRM Bahn et al. (2015)
- Mitigation & CDR Rickels et al. (2018)
- Mitigation & Adaptation & CDR & SRM Moreno-Cruz et al. (2018): partial equilibrium model

 Mitigation & CDR & SRM Bickel &Lane (2009): both SRM and CDR are prescribed Heutel et al. (2015): static model Long and Shepherd (2014): discussion

This paper: dynamic model, welfare maximization; CDR and SRM are policy variables

- What is the role of CDR and SRM in the extended climate policy portfolio?
- How does this portfolio composition alter over time in response to alternative model specifications?
- Derive the "napkin diagram"

Extended climate policy portfolio: mitigation + CDR + SRM

DICE-2016:

- 1-year timestep
- \bullet + CDR costs
- \bullet + SRM and side-effects

Belaia, Keith & Wagner

Mitigation, CDR, and SRM over time

SRM damage calibration

- SRM costs = 0 ("Free driver"), only damages D
- Keep it <u>simple</u>—i.e., parametric:

$$D = d \cdot (\frac{G}{F_{2 \times CO2}})^2$$

 Calibration, based on no evidence: Solar geoengineering G fully compensating for 2 × CO₂ induces D equal to damages from warming due to 2 × CO₂

SRM damages D

Three central assumptions:

- Marginal costs decrease over time
- Marginal costs increase with emissions cut/carbon removed
- Marginal costs of CDR exceed those of abatement
- μ = fraction of emissions controlled
 - Abatement: $\mu \in [0; 1]$
 - CDR allows for $\mu > 1$

Mitigation and CDR costs function

20

Mitigation only

(b) Radiative Forcing

(d) Damages

(c) Temperatures

Belaia, Keith & Wagner

Mitigation + CDR v Mitigation + SRM only

Belaia, Keith & Wagner

Mitigation, CDR, and SRM over time

Mitigation + CDR + SRM

(b) Radiative Forcing

(d) Damages

Belaia, Keith & Wagner

S1. Smaller discount rate (zero PRTP)

2150

Year

baseline

SRM

mitigation+CDR

2150

Year

2100

2100

mitigation

mitigation

mitigation+CDR+SRM

2200

2250

2250

2200

(c)

S1. Welfare gains under 1.5%, 3%, and 0% PRTP

Percentage change in welfare relative to a baseline policy

Belaia, Keith & Wagner Mitigation, CDR, and SRM over time

S2. Twice larger climate damages

Belaia, Keith & Wagner

Mitigation, CDR, and SRM over time

29 June 2018 13 / 20

2250

mitigation

SRM

2250

S3. Twice larger SRM damages

(b) Radiative Forcing

(d) Damages

Belaia, Keith & Wagner

S4. Linear SRM side-effects

(b) Radiative Forcing

(d) Damages

Belaia, Keith & Wagner

- Even assuming disproportionally large external costs, SRM is part of a climate policy portfolio, largely because of timing vis-á-vis mitigation & CDR.
 (SDM is not out: CO control complement to mitigation % CDD)
 - (SRM is not anti- CO_2 , only a complement to mitigation & CDR.)
- Larger climate damages call for more mitigation, more SRM.
- CDR reduces the long-term damage costs, even though CDR is always more expensive than mitigation.
- SRM shaves off temperature peak, reducing extreme damages.
- Both CDR and SRM delay mitigation efforts.

Next steps

- Role of inertia
- Delay in climate policy implementation
- ???

S5. Larger discount rate (PRTP of 3% vs. 1.5%)

(b) Radiative Forcing

(d) Damages

Belaia, Keith & Wagner

Mitigation, CDR, and SRM over time

	Sconario	Year				
	Scenario	2020	2050	2100	2150	2200
	Reference scenario	0.91	1.25	1.79	1.93	1.56
		(33.33)	(30.37)	(31.18)	(33.19)	(35.61)
S1	Larger discount rate	1.19	1.62	2.4	2.71	2.44
		(43.94)	(39.39)	(40.88)	(43.5)	(45.91)
S2	Smaller discount rate	1.88	2.11	2.26	1.47	0.44
		(70.29)	(57.59)	(54.75)	(60.44)	(124.67)
S3	Twice larger climate change damage costs	1.48	1.89	2.53	2.42	1.47
		(54.73)	(47.20)	(47.46)	(50.1)	(58.25)
S4	Linear SRM side-effects function	0	0	2.1	2.2	0
		(0)	(0)	(36.98)	(38.84)	(0)
S5	Twice larger SRM side-effects	0.89	1.19	1.55	1.34	0.61
		(18.73)	(17.72)	(18.45)	(19.85)	(22.44)

SRM, W/m^2 in alternative scenarios. In brackets: percent of GHG forcing compensated for by SRM

	Scenario		Year			
			2150	2200		
	Reference scenario	0	10.84	48		
S1	Larger discount rate	0	0	39.55		
S2	Smaller discount rate	9.8	37.21	16.57		
S3	Twice larger climate change damage costs	0	27.43	49		
S4	Linear SRM side-effects function	0	15.76	61.54		
S5	Twice larger SRM side-effects	0	19.2	52.85		

CDR, $GtCO_2/year$