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~$200 / tCO,



~$185 Social Cost of CO,

Based on 2% constant discount rate, with most of the increase due to discounting
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~S50 to ~S80 from updated damages,

~S80 to ~S185 from discounting

Source: Rennert et al “Comprehensive Evidence Implies a Higher Social Cost of CO,” (Nature, September 2022).



https://www.nature.com/articles/s41586-022-05224-9

> $200 / tCO,



“Synthetic” Social Cost of Carbon with median = $185 and mean = $284
For 1 tonne of CO, emitted in 2020, in $2020, with 5%—-95% range of $32-$874(!)
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Source: Moore, Drupp, Rising, Dietz, Rudik & Wagner (2024), gwagner.com/synthesis-scc



https://gwagner.com/synthesis-scc/

~ $200 / tCO,

~8-10% of
global GDP



~ $1,000 / tCO,

~50%(!!) of
globa/ GDP

Source: Bilal & Kanzig (NBER, 13 May 2024),


http://www.nber.org/papers/w32450

> $150 /
car entering NYC™

* Manhattan below 60t Street
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Projection 2024

A 0.8% (-0.3% 10 1.9%)

Source: Global Carbon Project (2024)
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BCG

Major course correction needed to achieve the 1.5°C ambition

Net CO2e per year 59 Gt

-7%
annual reduction in
emissions needed by

2030 to meet the 1.5°C
31 Gt pathway

+1.5%

12 Gt 9 Gt recent annual increase
in emissions from

2011-2021
1930 2011 2021 2030 2050

Sources: IPCC, PIK, BCG analysis
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Briefing | Carbon bargain

The energy transition will be
much cheaper than you think

Most analysts overestimate energy demand
and underestimate technological advances

Unshakable pessimism 2
Global renewable energy?,
capacity added each year, GW
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*Includes solar, wind, hydropower, bioenergy, geothermal

and marine TExisting-policies scenario, lower-end estimates

Source: IEA




* “Trump can and will handicap domestic industries in jockeying for positions in [the global climate
race], but he cannot halt it.” ( , 9 November 2024)

% Columbia Business School


https://gwagner.com/trump-victory-climate/

Large abatement opportunities available at low or no cost
McKinsey Global v2.0 effort in 2009 identified 38 GtCO,e abatement potential in 2030

Gas plant CCS retrofit

Abatement cost Coal CCS retrofit
€ pertCO.e Iron and steel CCS new build -
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Mote: The curve presents an estimate of the maximum potential of all technical GHG abatement measures below €50 per tCO,e if 2ach
lever was pursued aggressively. It is not a forecast of what role different abatement measures and technologies will play.
Source: Global GHG Abatement Cost Cunve v2.0



Exhibit 46: The IRA has transformed the cost curve of the US bringing most technologies in the money, especially in the transportation and

buildings sectors
US carbon abatement cost curve for anthropogenic GHG emissions, based on current technologies and current costs, assuming economies of scale

for technologies in the pilot phase prior and after IRA
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Source: Goldman Sachs Global Ivestment Research



Comparison of global mitigation potentials at different costs

The IPCC results use different baseline emissions to calculate the range of mitigation potentials. The top panel
reports the full set of results, and the bottom panel reports only the mitigation potentials with costs >$0 per
tonne of CO, equivalent (tCO,-eq). USD reported in 2020 dollars. See supplementary materials.
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Capital intensity varies widely across sectors
Transport and buildings with largest up-front capital expenditure requirements

) Size of the bubble indicates
Abatement cost the abatement potential in each sector
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Source: Global GHG Abatement Cost Curve v2.0
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12 climate technologies needed to achieve abatement targets .
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“Moore’s Law” of climate technology:
100x scale-up drives 70%+ cost-down

Abatement cost, $/tCO,
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“and Moore’s Law of Climate Tech”: 80-20, 50-50, 20-80. - ;
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10 % of techs in the money today — steep cost-dowli,to 2030 - .

-

Clean Carbon capture | Circularity
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100%$/tCO, carbon tax would make most techs comi,)eti'tive E
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Steel sector Scopes 1 and 2 around 10% of global CO,e emissions

.. . - Y/
CO,e emissions in 2024*: ~50 billion tonnes Bl Scope 1 77 Scope 2
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Sources: Scope 1 emissions from Rhodium Group ClimateDeck (September 2024); Scope 2 iron and steel estimate from |[EA (2023); * 2024 emissions based on projections. . .
Credit: Theo Moers, Mimi Khawsam-ang, Max de Boer, Grace Frascati, Hyae Ryung Kim, and Gernot Wagner (27 September 2024); share/adapt with attribution. Contact: gwagner@columbia.edu C°|umbla BUSII"IeSS SChOOI



https://rhg.com/data_story/climate-deck/
https://iea.blob.core.windows.net/assets/8f6568aa-1dd8-4578-bc61-24ceba4a07dd/EmissionsMeasurementandDataCollectionforaNetZeroSteelIndustry.pdf
https://business.columbia.edu/faculty/people/gernot-wagner
https://creativecommons.org/licenses/by/4.0/
mailto:gwagner@columbia.edu
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At present, crude steel Is produced through three main methods
that all emit CO,: BF-BOF, scrap EAF, and NG DRI-EAF

Blast Furnace-Basic Scrap Electric Arc Furnace Natural Gas-Based Direct
Oxygen Furnace (BF-BOF) (Scrap EAF) Reduced Iron — Electric Arc
Furnace (NG DRI-EAF)

Description Iron ore, coke, and limestone produce Scrap metal is melted in an EAF using Iron ore is turned into iron using natural
pure iron in a blast furnace, which is electrical energy gas, which is then melted in an EAF to
turned into steel in an oxygen furnace produce steel

Main inputs Iron ore, cooking coal Scrap steel, electricity Iron ore, natural gas

% of global steel production J 72% \ 21% ' 7%

CO2 per tonne of crude steel 2.3 tonnes 0.7 tonnes 1.4 tonnes

Energy intensity per tonne ~24 GJ ~10 GJ ~22 GJ

of crude steel

Average cost per tonne ~$390 ~$415 ~$455
of crude steel

Sources: World Steel Association; IEEFA (2022); IEA, Iron and Steel Technology Roadmap (2020); Steel Technology, Basic Oxygen Furnace Steelmaking; Recycling Today, Growth of EAF Steelmaking;
Wildsight, Do We Really Need Coal to Make Steel. Credit: Mimi Khawsam-ang, Max de Boer, Grace Frascati, and Gernot Wagner (16 September 2024); share/adapt with attribution. Contact:

gwagner@columbia.edu . .
% Columbia Business School



https://worldsteel.org/steel-topics/sustainability/sustainability-indicators/
https://ieefa.org/sites/default/files/2022-06/steel-fact-sheet.pdf
https://www.iea.org/reports/iron-and-steel-technology-roadmap
https://www.steel-technology.com/articles/oxygenfurnace
https://www.recyclingtoday.com/article/the-growth-of-eaf-steelmaking/
https://wildsight.ca/2020/06/01/do-we-really-need-steelmaking-coal/
https://business.columbia.edu/faculty/people/gernot-wagner
https://creativecommons.org/licenses/by/4.0/
mailto:gwagner@columbia.edu
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Green H,, electrolysis, and CCUS could reduce steelmaking CO,

emissions by over 85% if implemented at scale

Description

100% Green Hydrogen (H2)
DRI-EAF

* Green hydrogen replaces natural
gas as an iron ore reductant in DRI
shaft; the rest of the process remains
the same

+ Generates water as a byproduct
instead of CO,

Iron Ore Electrolysis

* Two different processes are
possible:
Molten oxide electrolysis: High current

runs through mixture of iron ore and liquid
electrolyte to split ore into pure molten iron

Electrowinning-EAF: Iron from iron ore is
dissolved in acid. Iron-rich solution is then
electrified to form pure solid iron

Carbon Capture, Utilization,
and Storage (CCUS)

* CCUS equipment can be added to
existing steel-producing
infrastructure to capture emitted
CO,

» Captured CO, is then sequestered
underground or reused

Real-time sector initiatives

HYBRIT/Stegra
100% fossil fuel-free DRI-EAF production
with green H, used for DRI

Electra

Electrowinning to produce high-purity iron
plates ready for EAF input (no DRI or
MOE step)

ArcelorMittal

Carbalyst® captures carbon from a blast
furnace and reuses it as bio-ethanol.
However, technology not proven at scale

Applicability to conventional
routes

Applicable to existing DRI-EAF route,
with minor retrofitting

Full overhaul of BF-BOF equipment
required; replacement of DRI shaftin
DRI-EAF

Retrofitting of capture technology is
possible on conventional BF-BOF and
DRI-EAF

Decarbonization potential (vs. BF-
BOF)

~90%

~97%

~90% ! ]
Hypothetical best-case scenario

Estimated production cost (excl.
CapEx)

Sources: Columbia Center on Global Energy Policy (2021); IEA, Iron and Steel Technology Roadmap (2020); McKinsey (2020); Mining Technology (2023); Tata Steel; Primetals Technologies;

<$800 per tonne of steel

Edie, ArcelorMittal accused of net-zero greenwashing (2023). Credit: Mimi Khawsam-ang, Max de Boer, Grace Frascati, and Gernot Wagner (13 March 2024); share/adapt with attribution.

Contact: gwagner@columbia.edu

~$215 per tonne of iron + cost of
‘stranded’ iron ore

~$380 — 400 per tonne

4.— Columbia Business School


https://www.hybritdevelopment.se/en/hybrit-demonstration/
http://www.gwagner.com/h2gs
https://www.electra.earth/technology/
https://corporate.arcelormittal.com/climate-action/decarbonisation-technologies/carbalyst-capturing-and-re-using-our-carbon-rich-waste-gases-to-make-valuable-chemical-products
https://www.energypolicy.columbia.edu/publications/low-carbon-production-iron-steel-technology-options-economic-assessment-and-policy/
https://www.iea.org/reports/iron-and-steel-technology-roadmap
https://www.mckinsey.com/%7E/media/McKinsey/Industries/Metals%20and%20Mining/Our%20Insights/Decarbonization%20challenge%20for%20steel/Decarbonization-challenge-for-steel.pdf
https://www.mining-technology.com/uncategorized/the-four-horse-race-to-decarbonise-steel/
https://www.tatasteeleurope.com/sites/default/files/tata-steel-europe-factsheet-hisarna.pdf
https://www.primetals.com/portfolio/ironmaking/corexr
https://www.edie.net/arcelormittal-accused-of-net-zero-greenwashing-over-carbon-capture-plans/
https://business.columbia.edu/faculty/people/gernot-wagner
https://creativecommons.org/licenses/by/4.0/
mailto:gwagner@columbia.edu

Wind and solar power
resources

Natural gas and
sequestration resources

© Industrial GDP

r Green energy trade flows,
2050

New energy supply chains need to be established to link
energy-abundant regions and industrial centers

McKinsey & Company 33



Source: Rich Lesser, Global Chair, Boston Consulting Group (2023)



BlackRock.

the net-zero
transition
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